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A S Y M P T O T I C  M O D E L  O F  A C T I V E  R E S O N A N C E  A B S O R B E R  

O F  A C O U S T I C  V I B R A T I O N S  I N  A C L O S E D  R E G I O N  

V. B. Kurz in  UDC 534.2 

Resonance absorbers of the Helmholtz resonator type are widely used in engineering to suppress acoustic vibrations. 

The Helmholtz resonator in its classical form operates as a reactive damper and has the drawback that the frequency range in 

which it works efficiently is limited. It was found that this drawback can be considerably rectified by forming a jet  issuing from 

the throat of a resonator. In this case, a part of the acoustic energy is spent in the generation of an unsteady vortex sheet 

shedding from the edge of the resonator throat, and thus active absorption of acoustic vibrations occurs. 

Some laws governing the influence of the jet on the utilization efficiency of the resonator as a dynamic absorber of 

acoustic vibrations were studied numerically in the context of a two-dimensional model [1]. In the present paper the question 

is considered within the framework of a more general spatial statement of the problem. Analytic dependences of the amplitude 

of forced acoustic vibrations in a closed region on the parameters of the active resonator are obtained in the asymptotic 

approximation. 

1. Basic Assumptions  and Small Parameters  of the Problem.  Let us consider forced acoustic vibrations in a closed 

region D 0. To suppress the vibrations the Helmholtz resonator, which is an integration of the regions D 1 and D 2, is appended 

to the region (Fig. 1). Prescribing the form of the resonator throat D 1 as a circular cylinder, let us take as characteristic 

dimensions of the region D = D O U D 1 U D 2 the radius R 1 and length l of the cylinder, and the radii R 0 and R 2 of the 

spheres, whose volumes V 0 and V 2 are equal to those of the regions D O and D 2. Let us introduce the following assumption 

on the geometry of the region D: 

R I << R 2 ,~ R o, l<< Ro; (1.1) 

H 0 <  - -  H 2 = 0  R 2' (1.2) 

Here H 0 and H 2 are the mean curvatures at the points of the surfaces f~o and [22 of  the regions D o and D 2. Now suppose that 

the storage of external excitation is placed at the surface f~o and the frequency of the excitation ~ is close to one of the lowest 

free frequencies of acoustic vibrations ~oj in the region D 0, i .e.,  

tO I 
(1.3) 

Let us suppose that a gas jet issues from the resonator throat D 1 with velocity U = const to enable active absorption 

of acoustic energy in the region D 0. We will simulate the jet  by a cylinder with diameter p = R 1, and length L = O(Ro). In 

this case 

M = U / c < <  1 (1.4) 

where c is the speed of sound of the gas. According to assumptions (1.1) and (1.3), we introduce the small parameters 

c$ = R 1 /  R2; (1.5) 
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= k = ~ R 2 / c ,  (1.6) 

which will be used in constructing the approximate solution to the problem. We presentthe assumptions (1.3) and (1.4) as the 
estimates 

k - koi = O ( e ~ ) ,  ko ' = w o i R 2 / c ;  (1.7) 

M = O(e) .  (1.8) 

2. Statement of the Problem and the Method of Solution. According to the assumptions introduced in Section 1, 

the problem of evaluating the acoustic vibrations in the region D = D o U D 1 U D 2 is reduced to finding the amplitude 
function of the velocity potential to accuracy up to the first order of smallness of ~. The function should satisfy the equation 

A ~  + ;t2~ = O, ;t 2 = 0 . ,2 /c  2 (2.1) 

and the following boundary conditions: 

1) the impermeability condition 

0v - 0, r E f2~ tA f22 (2.2) 

where v is the direction of the internal normal to the rigid surface of the region D and r is the radius-vector of the gas particles; 

2) the condition of dynamic compatibility at the jet boundary I' ,  which is the surface of contact discontinuity of steady and 
unsteady components of the velocities 

bl~o § = bt~o- + MTx , p  = RI, 0 ~< x ~ L (2.3) 

where ~+ and r  are the values of ~ at the outer and inner parts of r ;  
3) the Joukowskii-Kuttacondition 

[ V ~ ] <  a . , x =  0 § =R1; (2.4) 

4) the condition of radiation of acoustic excitation energy by the surface f]0 of the region Do: 

ol, = q(r), r E flo- (2.5) 

Since the domain of solution of the problem stated is naturally divided into three simple subregions Dj (j = 0, 1, 2), 

it is reasonable to apply the matching method to find the solution. The method consists in construction of the sought-for 
function ~p in each individual subregion separately and subsequent conjunction of the appropriate expressions for ~j at the 

common parts of the boundaries Dj. In this case, taking account of the assumptions (1.1)-(1.4), the function ~oj can  be found 
using the perturbation method. The elements of the method were employed in stating the problem in Eq. (2.1) wherein terms 

of the second order of smallness of e were dropped. The latter circumstance considered, we will seek the solution of the 
problem approximately, namely, to accuracy up to the first order of smallness of e and 8. 

3. Solution in the Region D 1. Since the region D 1 is canonical and has the form of a circular cylinder, the general 
solution of Eq. (2.1) satisfying the condition (2.2) will be obtained in the axisymmetrical approximation using the method of 

separation of variables as follows: 

~~ ~o [ a"e~: '7~x + b 'e-  ~V'~cx +')]/~ (3.1) 

Here ~" = 0 and ~'n (n = 1, 2 .... ) is the root of the equation 
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Fig. 1 

OJ o 
= 0 w h c n p  = RI;  

J0 is a Bessel function of the zeroth order. 

4. Solution in the  Region D 2. Acoustic vibrations in the region D 2 are excited by the acoustic energy flux from the 

region D 1. The function ~2 describing the vibrations can be derived by solving Eq. (2.1) subject to (2.2) at the solid boundary 

of the region D 2 and the condition 

-- when x = - l, 0 ~ p < R r (4.1) 
Ox ax 

Let us present the function as the sum of three components 

(4.2) 

where ~P21 is the solution to Eq. (2.1) subject to the following boundary conditions: 

0~O21 
ax 

[ 0~ol 
_ t--~- x whenx = - l ,  0 ~ p  ~< 1, 

[0  when x = l, p > 1, 

l im Jr/~ + bt.~21] 
t,I--L t J } = o, 

(4.3) 

where ~2 is an arbitrary function subject to the conditions 

~2 ~21 -~-  -- - --~--, r ~ ft2; (4 .4)  

0r 
av - O, r E s w (4.5) 

Here ~21 is the common part of the boundaries of the regions D 2 and D I, and if2 is the solution to the equation 

a,p 2 + Jl'~p 2 = - (a~2 + ;d~2) = f 
(4.6) 

provided that 

~02 
av - O, r eft 2 U ~ , r  (4.7)  

The solution to the problem (4.3), which describe the acoustic field radiated by the section of the surface 9,21 of a fiat 

screen, can be accurately presented using the Huygens-Rayle igh  integral [2] 

1 e-air - %lu.(ro)d% a~p 
s~ = - ~ [r - ro[ , u, - ~,, (4.8)  
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Passing to the dimensionless parameters 

~ =  x + l ,  I r 
- R~ f i = e - ' T = - - ~  =~R~,7- , 

R1 Rl' RI (4.9) 

taking account of (1.5), (1.6), and (3.1), (4.3), and (4.9), we find from (4.8) for 0 = 0 

R l ~ RcJ~2e d PodOo 
~, ~(7~, fi) = -~ . = , 

Ar 
0 0 

(4.10) 

where, according to (4.1) 

~_, A, Jo(~,~ ), Yc = 0; (4.11) 012 - -  0 x  - -  

n ~ o  

= q , ~  - 2:So,~COS0 o + ,~' + 7d; (4.12) 

-~,~7 b0). (4.13) A = ~ ( a , e  - ~  - b ) ,  A o = l R2 (aoe -- 

By virtue of axial symmetry ~1, the expression (4.10) for ~21 will be valid for any 0. Let us specify an arbitrary function ~2 
which must satisfy the conditions (4.4) and (4.5), 

~2 = f~(v)/,(r), r(L '7) ~f~2, (4.14) 

where 

f e x p  ( - 1 _----~) d~when~ = v / R  l <~ 1, 1 
v 

fl  = 
when ~ > 1; 

~v21 @21 cos(r,Av) 

(4.15) 

(4.16) 

(P, ~', ~7) is the system of orthogonal curvilinear coordinates for which v = 0 is the equation of the surface ~2. 
To determine the function ~b2, let us expand the right-hand side of Eq. (4.6) into a series with respect to the 

eigenfunctions of the problem (4.6) and (4.7): 

f = ~ dnV,2," (4.17) 
rim0 

Then 

** dn 
*2 = E 2 T - ~  V'z"" (4.18) 

n s 0  

Here ~k2n are the eigenvalues of the problem (4.6) and (4.7) 

,1.2o = 0, *20 = 1. (4.19) 

when n = 0. Normalizing the eigenfunctions so that 

f , ~ a u  = v 2, 
v 2 

(4.20) 

we find from (4.17) 
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1 d = -~2 f lT'z"&" (4.21) 
v 2 

Substituting the expression (4.6) for f in (4.21) with n = 0 and applying Green's formula, taking account of (4.19), 

we have 

2 tl2 

Taking account of (4.3), (4.4), and (4.11), we obtain from (4.22) 

R21 [1 + O(c~e2)]., (4.23) d o = ~rA o !,-~2 

Let us separate the zeroth term from (4.18) and estimate the remaining sum if2 applying the H61der inequality 

1~1 " ( l d ~ )  ~ ( . (12-~,),2) �9 (4.24) 

From the fullness of the system of eigenfunction, taking account of (4.20) it follows that 

2 
(4.25) 

Substituting (4.6) into (4.25 ) and taking into account (1.2), (4.10), (4.11), and (4.14)-(4.16), we obtain the estimate 

~ d 2 = A~O(d3). (4.26) 
R 2 

n~0 n V2 

Taking into account the asymptotic behavior of the eigenfunctions and eigenvalues [3] in the region V2, we have 

- - 2  ~ - 0(1).  (4.27) , - i  (/t2 - "tz,) 

Substituting (4.21) into (4.18) with taking into account (1.5), (1.6), and (4.23)-(4.27), we obtain the main component of  (4.2) 

for ~a2: 

R~ ~2 
~02 - V2 k2 11 + e20(6-V~)lAo. (4.28) 

5. Solution in the region D 0. In the region D o the gas vibrates under the action of three sources with different 

excitation mechanisms. These sources are the jet issuing from the throat of the resonator and the acoustic energy flux from the 
resonator and from the external source. Accordingly, the amplitude function of the velocity potential in D o can be divided into 

three components: 

~o 0 = ~oo + ~o0~ + ~oq. (5 .1)  

To present the function ~c, which describes the vibrations due to the interaction of the jet with the ambient 

environment, let us consider first the qualitative mechanism of the interaction. As is known [4], the steady component of the 

jet generates noise, whose level is proportional to the eighth power of the velocity of the gas flow in the jet. Taking into 

account (1.8), let us neglect the effect of the noise on the acoustic vibrations under consideration. Since the gas jet issuing from 
the resonator throat is affected by the external source of acoustic disturbances in the region D O , the velocity of its flow will 

include also an unsteady component. Given the flow, the vibratory motion of the gas in the vicinity of the resonator edge is 

partially transformed into a vortex motion [5]. The appropriate eddying particles separating from the edge move with a velocity 

equal to that of the flow and form a vortex sheet of varying intensity. Under the assumption that during the motion of eddying 
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intensity of certain particles of the sheet varies slightly [6], we will also ignore the acoustic disturbances which are generated 

by the unsteady jet component in the region D O . 
However, in addition to the acoustic disturbances the unsteady vortex sheet induces also a solenoidal component of the 

velocity variations of the gas. The value of the component in the vicinity of the resonator throat can affect significantly the 

acoustic energy flux from the resonator in the region D o. Thus, as a basis of the function ~o e we take the amplitude function 

of the velocity potential ~o B, the velocity induced by the unsteady vortex sheet. The function satisfies the Laplace equation. 

Imposing on ~o B the condition of axial symmetry and the following condition to simplify the calculations: 

- 0 when x = 0, (5.2) 
0x 

let us present the function ~o c as the sum of two components: 

~oo = so s + ~ .  (5.3)  

Here ~B is the discrepancy due to inaccurate fulfillment of Eq. (2.1) and boundary condition (2.2) by the function ~a. 

The unsteady component of the intensity of the vortex sheet 3" can be determined from (2.3). To this end, we 

differentiate the relationship (2.3) with respect to x and modify it as follows: 

~ + ~  ~ =M~-x-,  

where 7 = ax -~-x' o = 2 ~ + Ox )" Let us write the solution to the equation in the dimensionless coordinates 

y = 7oexp(- la.~) + 7~, a = 2zoR1/U. (5.4) 

Here 3'0 is the intensity of the vortices shedding from the edge of  the resonator, which is found from the condition (2.4): 

1 ~o 1 v owhenx ~ 0-,i~ = I; (5.5) 
~ ' o -  R ~x  - 

3'1 is the component of 3" which appears due to the tension and compression of the jet in the acoustic velocity field: 

7 ,  = - 2 e  - ~  f ~ f e ~ d ~  = - 2%[1  + 0 ( 6 )  1. 
0 

By virtue of (1.3) the acoustic vibrations in the region D O occur with predominance of the j-th harmonic. Therefore, 

the function v x can be approximately presented as follows: 

1 
v = g~-~-sinffx, fl = O(e~) 

Ro 

(gj is the amplitude of ~b-th harmonic of acoustic vibrations in Do). This yields 

I 

Yl = - 2gj ~oo sinfl]. (5.6) 

Taking into account the condition (5.2), let us determine the velocity field induced by the unsteady vortex sheet on the right 

half plane from the formula 

R 1 j. ~ | ( r -  ro) x ~lxeYd0od~ o 
v = rio (7") -- - ~" I~01 t r - r,I  3 ' 

--L --X 

where r is the dimensionless radius-vector related to R 1 and T o is the unit-vector of the tangential to the surface of the vortex 

sheet, which has the same sense of direction as the vector of  the elementary vortex that is placed at the point r o. 

Using the formula, we find the value of  the function ~B with x = 0 and p < 1. Taking into account the assumption 

of axial symmetry, we will assume that 0 = 0. It is shown below that the quantity ~o B, which is determined by the component 
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3'1 of the vortex layer, is the value of the second order of smallness with respect to the excitation from the external source. 

Hence, substituting the first term (5.4) with account of (5.5) in the formula for v B and taking into account that L = O [(e6)- 1], 

we obtain for the axial and radial components of the velocities 

8x 

= ~. (1 - pcOSOo)Xoe-i"l;old0od~o 

" : ' f  J ~-~o~o---~ ~ 7 ;  (; - ;---~)'~" ' ~  . . . .  I ;o1[  
(5.7) 

~ 7 ? (2 = ;o);oO_-~'2~176 
oF - 4a _-'=_~ iXolii - 2~coso o + ~z + (x - 7,o)213/2" (5.8) 

From (5.8) it follows that 

~t~ B 
- ~ - =  Owhen~ = O. (5.9) 

Taking into account (5.9), we find from the equations of gas motion that with k = 0 

(5. lO) 

where PB is the amplitude function of the pressure fluctuations induced by the vortex sheet and Oo is the gas density. 

Integrating Eq. (5.10) and assuming that PB = 0. With 2 --- oo, we obtain 

P" = : ~  L~ 12 + ~ o w.o. ~ = ~ = o. (5.11) 

Substituting (5.7) into (5.11), we have 

p.(O) = povoUl,. (5.12) 

Here 

e _ / a  t 

I~ = ( 5 . 1 3 )  (1 + tz) 3/idt" 

Substituting (5.12) into the Cauchy-Lagrange integral and taking account of (5.2), we obtain 

%U 
~',o = b-~-'~ II when ~ = ,~ = O. (5.14) 

Taking into account (5.8), the function ~'B(P) with x = 0 can be calculated by integrating the expression (5.8) with 

account of (5.14): 

~'. = ~'.o - 2 o ~ I ,  

1 P 7 n te-i=t 
(~,, = ~ f ~ f ~ , .  o, ,),~o,~,~,p, ~-~o. o. 0 = t, - ,.ooo~ §  + e~,,',) (5.15) 

o o o 

Substituting (5.14) into (5,15), we obtain 

YoU 
~,. 60) = /~ -~ I  (I = I, + ~i , ) .  (5.16) 

Now let us estimate the component ~m,  which is determined by the value of the component 3'1. Substituting (5.6) into the 

formula for ~B, comparing the appropriate projections with (5.7) and (5.8), and taking account of (5. i 13) and (5.14), we have 

i e-r' ~ o ( d ~ ) .  (5.17) ~~ = ~Rolm o (I + t2) 3/~dt = 
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The function 'kB (5.3) can be determined by solving the equation 

with boundary condition 
(5.18) 

ov ~ - --~-, r ~ Q0 U f~or (5.19) 

Let us present the amplitude function of the velocity potential ~PlO (5.1), which describes the acoustic vibrations in the 
region D o, the vibrations being excited by the acoustic energy flux from the region D I , as follows: 

',%, = ~o, + ~o,, 
(5.20) 

where @or is the main part of the function ~oOl, which we will determine as the solution to Eq. (2.1) subject to the following 
boundary conditions: 

[ 0~o, 
~7o~ _ )"~-x whe.  ~ = 0 ,  o -< ~ ~ 1, 

Ox l[Owhenx = O , p  > 1; 

~oi = 0 when 7 "-" =. 

(5.21) 

(5.22) 

The solution to the problem (5.21) and (5.22), analogous to the solution (4.10) of the problem (4.3), has the form 

).n I -  -irma.7 

Rl PoU~o e d'fiodOo. = f f ,,-------7 
0 0 

Here 

(5.23) 

~176 ax B..to(~.,~), x = 0; 
n = 0  

= oo)  
B = ~, ( b e  -~ .7-  a ) .  

The function ~01 of Eq. (5.20) can be determined by solving Eq. (2.1) with the boundary condition 

(5.24) 

(5.25) 

(5.26) 

a~Pol 
a~o l ~ , r E ~o, 
0v - 

r E f2or 
(5.27) 

Finally, we will determine the function ~Oq of Eq. (5.1) as the solution of Eq. (2.1) subject to (2.5) and the condition 

= 0, r ~ f2or (5.28) 
ax 

Let us introduce the function 

(5.29) 

whose components should be the solutions of the problems (5.18) and (5.19); (2.1) and (5.27); and (2.1) and, (2.5), and (5.28), 

and present it as the sum of two components: 

~o = g'o + ~o 
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where r is an arbitrary function which satisfies the boundary conditions (2.5), (5.19), (5.27), and (5.28) in the aggregate. 

Then the definition of the function ~o reduces to the solution of the equation 

A~o + e262VJo = fo' fo = - (A@o + e262@o) (5.30) 

with uniform Neumann conditions at the boundary ~o = f~o L3 f~01. Let us present the function ~o, as well as the function ~2, 
in the form (4.14)-(4.16). Having presented the function ~k o as a series in terms of the eigenfunctions of the problem (5.30), 

let us find ~o in the same manner as r in Section 4: 

62 R 2 
@0 ---- Vo k 2 _ k 2 { / r  [~Poj + O(e2)  ] + =Bo~ol[~o~ + O(6"36-1/2) 1}' ( 5 . 3 1 )  

oj 

where r is the value of the eigenfunction r with ~ = k = 0 and B o is the constant (5.25), 

I~ = f ~po, qd'6. (5.32) 
gl 0 

6. Matching of Solutions. The functions ~j (j = 0, 1, 2), presented above in the appropriate subregions Dj, will 
determine the general solution of the problem stated in the matching conditions hold: 

~Po = ~PI, r ~ ~1o; (6.1) 

~o = ~o2, r E f212. (6.2) 

Substituting the main par t sof  the asymptotic presentations of the function Cj found in Sections 3-5 into the conditions 

(6.1) and (6.2), we obtain 

. %u Rl f Polo 
ao + bo e-'a' + E a.Jo(~,, fi) = t ---d- I + - ~ o  ~ Ar a~~176 

n = l  

2 4 
3 R 2 

Vo(k 2 - ~,) (~ + ~BoV, oYo,); 

%e + bo + O J = - ao + o ; 

(6.3) 

(6.4) 

Expanding the right-hand sides of the relationships (6.3) and (6.4) at the section (0 < ~ < 1) into a Four ier -Bessel  series 

of the second type and equating the coefficients of the series to the corresponding coefficients of  the left-hand sides of the 
relationships, we obtain the following system of algebraic equations: 

2 4 
M dt R 2 

a~ + b~ = g2%OSla - 2672) vo(k 2 - k~) (/~ + JrB~ + Q~o; (6.5) 

a0 e-a~ + bo = - k2-"'~-2 Ao + Q~2; (6.6) 

a, = Z h,,,,B,, + d%, n = 1, 2 . . . .  ; (6.7) 

m ~ 0  

b = E h  A , n  = 1,2  . . . .  (6.8) 
m=0 

Here 

_ -= - 2  
h,,~, 2.nC Ar 

n 0 0 0 0 

d. - ztg.C, pllF(p, O, t)dOdtdp; T 2 = -~ f f f ( I  - p2)F(p, 0, t)dOdtdp; 
0 0 0 

u "1  A r  
0 0 o 

(6.9) 
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A m and B m are expressed in terms of a o and b 0 by the formulas (4.12), (4.13), (5.25), and (5.26). The system (6.5)-(6.8) is 

closed by the relationship that follows from the condition (2.4). It follows from the expression (5.8) and (5.23) that the radial 

components of velocity at the edge of the resonator with X = c and ~ = I have regularities of the type 

c~,p~ %R 1 ~ dO O~Ol BoR ~ '* dO 

 =-wf o,o  o" 
o s i n -  o s i n -  

2 2 

Since 

~ < |  

the condition (2.4) will be valid if 

v o = B o = t -~2(boe- i '67-  %).  (6.10) 

An asymptotic analysis of the coefficients hnm with m and n --, oo shows that the system (6.7) and (6.8) reduces to the type 

of systems which appear in the history of'waveguides [6] in solving the appropriate problems by the matching method. Taking 

this into account, as Well as the expressions for A m and Bm, we obtain the estimate 

II x II | = of~a) II So I1., (6.11) 

where X o and X are the vectors 

X o =  Xo(ao, bo} ,X= X{a l , b  t , a  2 , b  2 . . . .  }. 

Substituting Eqs. (4.11) and (5.24) for vij into formula (6.9) with account of (6.11), we come to the conclusion that the values 

of Qij in Eqs. (6.5) and (6.6) can be neglected. Thus, in the asymptotic approximation, Eqs. (6.5) and (6.6) with account of 

(6.9) will make up the system of closed equations with respect to the constants a o and b o. 

7. Dependence of the Level of Acoustic Vibrations in the Region D O on the Parameters of  Resonator and Jet. 

Taking account of (5.1), (5.3), (5.20), and (5.29), we modify the expression for the amplitude function of gas vibrations in 

the region D O as follows: 

r = 'e. + ~ol + ~o 

where ~o B is the solenoidal component, and ~oI and ~o are the acoustic components. In this case the function ~Ol describing 

the acoustic gas radiation from the resonator with velocity v 0 rapidly vanishes as the distance from the resonator throat 

increases, while the function ~o, which determines the resonance vibrations in the region D o, is practically uniform over the 
whole region. 

Solving the system (6.5) and (6.6) in terms of (6.11) we find from (6.10) 

o = 
k 2 V2~Joa 

~Vo [(1 k2 

and from (5.31) 
~2 

r z - oo, 
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where 

k 2 2 R 2 M k  V 2 k 2 

V2l ' l Vo ~oj 

S I is the cross-sectional area of D 1 and k is the reduced frequency of the resonator. 
Let us analyze the dependence of the ampli tude-frequency response of acoustic vibrations in D O on the resonator 

parameters using the magnification function 

#o(k) 
, 7 ( I , )  = 

k 2 ( 7 . 1 )  

In the absence of the jet (M = 0) with k = k we have ~7 = 0. In this case, as is known, reactive suppression of the 

vibrations takes place. Along with this, M = 0, when the resonator is well-tuned to the frequency c%j in D 0, i.e., according 

to (1.7), 

k"-- kos(t + r-), ; = O(et/2), (7.2) 

in a certain small vicinity k0j, namely with 

1 

(7.3) 

the quantity ~/becomes infinity, i.e., with (7.3), resonance in the whole region D takes place. This is a substantial shortcoming 

of the resonator as a reactive absorber. 
Given the jet (M ~ 0), the denominator of (7.1) is a complex value; therefore, the quantity ~ cannot become infinity. 

Physically, in this case a portion of the acoustic energy transforms into vortex energy, which results in its active absorption. 

Let us consider the quantity ~7 with M ~ 0 in the regime of resonance of the system, assuming approximately that the equality 
to zero of the real part of the denominator (7.1) is the condition governing the resonance: 

2r [ ( 2 F -  2 r  + ~ , , )2  + ~,21 + / ~ ( 2 F -  2 r  + ~ " )  = 0. (7.4) 

Here r is the parameter of detuning of the frequency of the resonator and the free frequency ~oj (7.3); IVI' and lf'l" are the real 

and imaginary parts of  ill, and rp is the correction of the eigenvalue koj for the region D o for the attachment of the active 

resonator (regions D z and D2) which is the solution to Eq. (7.4). 
With the constraint (7.4) the expression (7.1) can be modified to give 

~(~) = (i - i , ) 1 ( 2 ; -  2 ~ +  .~")' + ~'21 = (t - i , )12;_- ~ + ~"1 (7.5) 
~,M' 2M'I~I 

Equations (7.4) and (7.5) in the aggregate determine the dependence of the value ~7(kp) on the parameters of  the resonator #, 
r, and 1~I. In this case the parameter 1~, which depends on the Mach number of the jet, serves as the damping factor of the 
system under consideration. As is known from the theory of active absorbers [7], thedependence of the level of the resonance 

vibrations on the damping factor should be nonmonotonic. Therefore, of practical interest is the assessment of the optimum 

value M = M 0 with which the maximum absorption of the resonance vibration occurs. This can be found from Eq. (7.4) and 

the condition 

at/(kp) = 0. (7.6) 
aM 

In an explicit form, we failed to obtain the solution to the system (7.4) and (7.6) with respect to Mo; thus, we present only 

the estimate 
tvl o = O(e3/2), 
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rl(kp) = O(e -v2 ) ,  

which follows from (7.5) with regard for (1.6), (5.13), (7.2), and (7.3), and with ~(kp) = O(e-1/z), while with M --, 0, ~7(kp) 
--, o~ ; and with M = O(e), r/(kp) --- O(r 
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